TD Ensembles, Applications

Ensembles

Élémentaires

55M Exercice 1 Soient A,B,C trois parties de E telles que $A\cup B\subset A\cup C$ et $A\cap B\subset A\cap C$. Montrer que $B\subset C$.

TJ6 Exercice 2 Pour A, B deux parties de \mathbb{R} , on définit la somme $A + B = \{a + b, a \in A, b \in B\}$; si $k \in \mathbb{Z}$, on note $k\mathbb{Z} = \{ka, a \in \mathbb{Z}\}$. Déterminer les sommes suivantes. Justifier brièvement chaque inclusion.

1.
$$\mathbb{Q} + \mathbb{Q}$$

2.
$$\mathbb{R}_+ + \mathbb{R}_-$$

3.
$$\mathbb{Q} + \overline{\mathbb{Q}}$$

4.
$$2\mathbb{Z} \cup 4\mathbb{Z}$$

5.
$$2\mathbb{Z} + 3\mathbb{Z}$$
 6. $2\mathbb{Z} \cap 3\mathbb{Z}$

6.
$$2\mathbb{Z} \cap 3\mathbb{Z}$$

EQW Exercice 3 $\prescript{/}{\!\!/}$ Soient A,B,C,D quatre parties d'un ensemble. On suppose que $A\subset C,B\subset D,C\cap D=\emptyset$ et $A\cup B=C\cup D$. Montrer que A = C et B = D.

B2C Exercice 4 A Soit $A = \{(x,y) \in \mathbb{R}^2 \mid 3x + y = 1\}$ et $B = \{(t-1, -3t+4), t \in \mathbb{R}\}$. Montrer que A = B.

311 Exercice 5 Pour $A, B \subset E$, montrer que $A \subset B \Leftrightarrow \forall X \in \mathcal{P}(E), A \cap X \subset B \cap X$.

Ensembles de racines de l'unité

K35 Exercice 6 Soit $n \in \mathbb{N}^*$. Montrer que $\mathbb{U}_n \cap \mathbb{U}_{n+1} = \{1\}$.

L8P Exercice 7 1. À quelle CNS sur $d, n \in \mathbb{N}^*$ a-t-on $\mathbb{U}_d \subset \mathbb{U}_n$? 2. Montrer que $\mathbb{U}_n \cap \mathbb{U}_m = \mathbb{U}_{\operatorname{pgcd}(n,m)}$.

KV2 Exercice 8 Soit $n \in \mathbb{N}^*$ impair. Montrer que $\{\omega^2, \omega \in \mathbb{U}_n\} = \mathbb{U}_n$.

Unions, intersections quelconques

7ZZ Exercice 9 Soient $(A_i)_{i\in I}$ et $(B_i)_{i\in I}$ deux familles d'ensembles. Comparer pour l'inclusion

1.
$$C = \left(\bigcup_{i \in I} A_i\right) \cap \left(\bigcup_{i \in I} B_i\right)$$
 et $D = \bigcup_{i \in I} (A_i \cap B_i)$

1.
$$C = \left(\bigcup_{i \in I} A_i\right) \cap \left(\bigcup_{i \in I} B_i\right)$$
 et $D = \bigcup_{i \in I} (A_i \cap B_i)$ 2. $E = \left(\bigcap_{i \in I} A_i\right) \cup \left(\bigcap_{i \in I} B_i\right)$ et $F = \bigcap_{i \in I} (A_i \cup B_i)$

508 Exercice 10 \bigstar Limites supérieure et inférieure Soit $(A_n)_{n\in\mathbb{N}}$ une suite de parties de E. On définit

$$\liminf_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{k \ge n} A_k \quad \text{ et } \quad \limsup_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{k \ge n} A_k.$$

Décrire simplement les éléments de $\limsup_{n\in\mathbb{N}}A_n$ et $\liminf_{n\in\mathbb{N}}A_n$.

Sur les parties

111 Exercice 11 Soient A, B deux parties de E. Quelles assertions n'ont, en général, pas de sens?

1.
$$A \in B$$

2.
$$A \subset \mathcal{P}(E)$$

3.
$$A \subset B$$

4.
$$A \in \mathcal{P}(B)$$

5. $\mathcal{P}(A) \subset \mathcal{P}(B)$

TFQ Exercice 12 \mathcal{I} Soient A, B deux parties d'un ensemble fini E. On cherche les ensembles X vérifiant l'équation $(E): A \cup X = B$.

- 1. Donner sans justification une CNS pour que (E) admette des solutions.
- 2. On suppose que cette condition est vérifiée.
 - a) Expliciter la forme des solutions de (E).
- b) Quel est le nombre de solutions de (E), en fonction de |A| et |B|?

F00 Exercice 13 \bigstar Soit A une partie finie de \mathbb{R} de cardinal n. On note $A + A = \{a + a', (a, a') \in A^2\}$.

- 1. Montrer que $2n 1 \le |A + A| \le \frac{1}{2}n(n+1)$
- 2. Donner un exemple où la majoration est une égalité.
- 3. ★ Montrer que la minoration est atteinte si et seulement si les éléments de A sont en progression arithmétique.

Applications

1II Exercice 14 \clubsuit Soient A, B deux parties de E. Soit $f: \mathbb{N} \to \mathbb{N}, n \in \mathbb{N}$ et $A \subset \mathbb{N}$. Quelles notations n'ont, en général, pas de sens?

1.
$$f \circ (f(n))$$

2.
$$(f \circ f)(n)$$

3.
$$f(A)$$

4.
$$f^{-1}(n)$$

5.
$$f^{-1}(A)$$

XNV Exercice 15 Soit $f: x \mapsto \frac{3x+1}{x+1}$. Déterminer f(]-1,1[) et $f^{-1}([2,3])$.

X29 Exercice 16 Soit $f \colon E \to F$ et $g \colon F \to G$ deux applications.

1. Montrer que si $g \circ f$ est injective, f est injective.

2. Montrer que si $g \circ f$ est surjective, g est surjective.

48C Exercice 17 / Étudier l'injectivité et la surjectivité de la fonction suivante :

1.
$$g_1: \begin{array}{ccc} \mathbb{N} & \to & \mathbb{N} \\ n & \mapsto & n+1 \end{array}$$

3.
$$g_3$$
: $\begin{cases} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x+y,x-y) \end{cases}$
4. g_4 : $\begin{cases} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x+y,xy) \end{cases}$

$$2. \ g_2 \colon \begin{array}{c} \mathbb{U} & \to & \mathbb{U} \\ z & \mapsto & z^2 \end{array}$$

4.
$$g_4: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (x+y,xy) \end{array}$$

B40 Exercice 18 9 Soit $f: z \mapsto z + \frac{1}{z}$ $\mathbb{C}^* \to \mathbb{C}$.

1. Expliciter $f(\mathbb{R}^*)$, $f(\mathbb{U})$.

2. f est-elle injective?

3. \bigstar *f* est-elle surjective?

Indication : Pour la surjectivité, tout nombre complexe non nul admet exactement deux racines carrées, donc toute équation du second degré admet des solutions (pourquoi?).

- 3YS Exercice 19 On considère $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \ \varphi \colon \ \ \begin{matrix} \mathcal{M}_2(\mathbb{R}) & \to & \mathcal{M}_2(\mathbb{R}) \\ M & \mapsto & AM \end{matrix} \text{ et } \psi \colon \ \ \begin{matrix} \mathcal{M}_2(\mathbb{R}) & \to & \mathcal{M}_2(\mathbb{R}) \\ M & \mapsto & BM \end{matrix}.$ 1. On note $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ la matrice nulle. Expliciter $\varphi^{-1}(\{O_2\})$ et $\varphi(\mathcal{M}_2(\mathbb{R}))$, sous forme de paramétrisations simples.

 - 2. La fonction φ est-elle injective? surjective? Justifier.
 - 3. Montrer que ψ est bijective, et expliciter son application réciproque.
- 7VJ Exercice 20 \bigstar Soient $A, B \subset E$. On considère l'application $f: \begin{array}{ccc} \mathcal{P}(E) & \to & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \mapsto & (X \cap A, X \cap B) \end{array}$.
 - 1. Montrer que f est injective si et seulement si $A \cup B = E$.
 - 2. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
 - 3. Si f est bijective, expliciter la bijection réciproque.
- B51 Exercice 21 \bigstar On admet que toute fonction $f \colon \mathbb{R} \to \mathbb{R}$ continue et injective est strictement monotone. On considère l'équation fonctionnelle (*) $f \circ f \circ f = \mathrm{Id}_{\mathbb{R}}$, d'inconnue $f : \mathbb{R} \to \mathbb{R}$. Déterminer les fonctions continues vérifiant (*).

Indication : *Il n'en existe qu'une seule.*

- **G40 Exercice 22** \bigstar Existence d'un inverse à gauche/droite Soit $f \colon E \to F$.
 - 1. Montrer que f est injective si et seulement s'il existe une fonction $g \colon F \to E$ telle que $g \circ f = \mathrm{Id}_E$.
 - 2. Montrer que f est surjective si et seulement s'il existe une fonction $g: F \to E$ telle que $f \circ g = \mathrm{Id}_F$. La question précédente utilise l'axiome du choix.
 - 3. Montrer qu'il existe une injection de $E \to F$ si et seulement s'il existe une surjection $F \to E$.

Bijections

- **4DS Exercice 23 A** Soit $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2 + x + 1$.
 - 1. La fonction *f* est-elle injective? Surjective?
 - 2. Expliciter un intervalle I maximal pour lequel f réalise une bijection de I sur f(I).
 - 3. Déterminer une expression de l'application réciproque $g \colon f(I) \to I$.
- **UKI Exercice 24** Montrer que $\varphi: (p,q) \mapsto 2^p(2q+1)$ est une bijection $\mathbb{N}^2 \to \mathbb{N}^*$.
- **OVX Exercice 25** Soit X un ensemble et $\mathcal{F}(X,X)$ l'ensemble des fonctions $X \to X$. Pour $f \in \mathcal{F}(X,X)$, on considère $\Phi_f \colon \mathcal{F}(X,X) \to X$ $\mathcal{F}(X,X), \quad g \mapsto g \circ f$. Montrer que Φ_f est bijective si et seulement si f l'est.
- N20 Exercice 26 \clubsuit Paradoxe de Russel Soit E un ensemble.
 - 1. Expliciter une injection $E \to \mathcal{P}(E)$. 2. \bigstar En raisonnant par l'absurde, montrer qu'il n'existe pas de bijection $E \to \mathcal{P}(E)$. **Indication**: Étant donné une telle bijection, introduire une partie A judicieuse, et discuter selon si $f^{-1}(A) \in A$.

Entre ensembles finis

- **5RL Exercice 27** QUELQUES TIROIRS Soit $n \in \mathbb{N}^*$. On considère a_0, a_1, \ldots, a_n des entiers distincts.
 - 1. Montrer qu'on peut en trouver deux distincts dont la différence soit divisible par n.
 - 2. On suppose que les a_i appartiennent à [1, 2n].
 - a) Montrer qu'on peut en trouver deux premiers entre eux.
 - b) \bigstar Montrer qu'on peut en trouver deux distincts tels que l'un divise l'autre.
- **GYB Exercice 28** \bigstar Soit $p \geq 2$.
 - 1. On considère $u_0, u_1 \in [0, p-1]$ et, pour tout $n \in \mathbb{N}$, on définit u_{n+2} comme le reste de la division euclidienne de $u_{n+1} + u_n$ par p. Montrer que $(u_n)_{n\in\mathbb{N}}$ est périodique.
 - 2. On considère la suite de Fibonacci définie par $F_1 = F_2 = 1$ et $\forall n \in \mathbb{N}^*, F_{n+2} = F_{n+1} + F_n$. Montrer qu'une infinité de termes de cette suite sont divisibles par p.
- ZNS Exercice 29 ★ 🖈 Soient a_1,\ldots,a_n des réels distincts. On note C la longueur de la plus longue sous-suite croissante de $(a_i)_{i< n}$, et D de la plus longue sous-suite décroissante. Montrer que $CD \leq n$.

Relations binaires

E2M Exercice 30 ${\mathbb Z}$ Soit $E={\mathbb R}^{\mathbb N}$ l'ensemble des suites réelles. On définit une relation binaire \sim sur E par

$$(u_n)_{n\in\mathbb{N}} \sim (v_n)_{n\in\mathbb{N}} \Leftrightarrow \exists n_0 \in \mathbb{N}, \forall n \ge n_0, u_n = v_n.$$

Montrer que \sim est une relation d'équivalence.

- **0F0 Exercice 31** $\operatorname{\mathbb{Z}}$ Relation de conjugaison Soit $E=\mathcal{F}(\mathbb{R},\mathbb{R})$. On dit que $f,g\in E$ sont conjuguées, ce que l'on note $f\mathcal{R}_c g$, s'il existe $\varphi \colon \mathbb{R} \to \mathbb{R}$ bijective telle que $\varphi \circ f \circ \varphi^{-1} = g$. Montrer que \mathcal{R}_c est une relation d'équivalence.
- QXY Exercice 32 Fermeture transitive d'une relation Soit \to_R une relation sur E. On définit une relation \to_R^* sur E par $x \to_R^* y$ si et seulement s'il existe une suite x_0, \ldots, x_n d'éléments de E vérifiant $x_0 = x, x_n = y$ et $\forall i \in [0, n-1], x_i \to_R x_{x+1}$.
 - 1. Montrer que \rightarrow_R^* est transitive et reflexive. Comment l'interpréter vis-à-vis du graphe de la relation?
 - 2. Montrer que si \rightarrow_R est symétrique, \rightarrow_R^* est une relation d'équivalence. Quelles sont ses classes d'équivalences, vis-à-vis du graphe de la relation?
 - 3. Montrer que \to_R^* est la plus petite relation reflexive et transitive contenant \to_R , c'est-à-dire que si \to^+ est une relation reflexive et transitive vérifiant $\forall x, y \in E, x \to_R y \Rightarrow x \to^+ y$, alors $\forall x, y \in E, x \to_R^* y \Rightarrow x \to^+ y$.